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Abstract: The method known as synthetic aperture radar (SAR) is utilized for creating high-resolution photographs 

stationary scenes. SAR is an imaging radar framed on a moving platform. In radar signal processing discovery of a 

weakly observable target is one of the most interesting area. In this survey, we will discuss about radar systems. 

Typical applications of radar include synthetic aperture radar, military application, airborne and spaceborne 

operation, speed control, air traffic control, and remote sensing. We also study about various imaging techniques that 

are used. Finally, potential applications of SAR imaging techniques. 

Keywords: SAR, detection, observable target, imaging techniques, radar system. 

1.   INTRODUCTION 

The electromagnetic detection technology known as RADAR, or in order to function, radio detection and ranging emits 

electromagnetic waves and then observing the reflected waves. Range, angle, and velocity of targets are all determined via 

radar. Detection shows whether or not the target is present [1]. The target could be either fixed or mobile when the target is 

stationary, SAR method is employed when the target is not stationary, ISAR is utilized [2]. Ranging shows the separation 

between the item and the RADAR. Radar can be divided into two categories both active and passive radar are used. An 

antenna transmits high-frequency radio waves onto the surface of the earth in active radar, which then collects information 

from the object's backscattered radio waves. Mono-static radars fall under this category [3-6]. The transmitter and the 

receptor are in the same place in this [6]. The transmitter and the receptor are located in distinct places in a passive radar 

system. The signal propagating from a different point is what a passive radar system relies on [7-9]. Bi-static radar is the 

name given to this type target with a low RCS can be manipulated remotely, uses aerodynamic forces to produce lift, and 

does not require a human operator [10]. The low RCS targets have more widespread uses in both the military and public 

spheres. Warfare and spying are just two of the many militaries uses for low RCS targets [11-12]. The civil applications 

cover things like mountain mapping and other things [13]. The region absorbing the energy that generates in all directions 

is referred to as the targets RCS (rho) [14]. Low rcs target or small target refers to a target with RCS of under one square 

meter [15]. Due to its ability to carry explosives, an undefinable low-RCS target at the border might threaten national 

security by gathering important information and destroying material. An active sensor is largely responsible for finding low 

RCS targets [16-18]. 
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2.   RADAR SYSTEMS 

Depending on the sort of signal a radar could process, the following two categories can be used to categorise radar [19].   

 

Fig. 1 Block Diagram of Pulse Radar on High power 

2.1 Pulse Radar 

Radar that employs pulse signals to find stationary objects is known as the simple or fundamental pulse radar [20-22]. It 

uses a single antenna to broadcast and receive signals and a duplexer to do so. The antenna will transmit a pulse signal with 

each tick of the clock [23]. The time gap that involves the two clock pulsations must be carefully choose to ensure that the 

present clock pulsations associated echo signal must be obtained prior the subsequent clock pulsations, it is crucial to set 

the time gap between the two clock pulses [24]. Moving Targets indication Radar is the name of the radar that use pulse 

signal to find non-stationary objects [25]. It is also known as MTI Radar or just MTI Radar [26]. It makes use of duplexer 

to transmit and receive signals using a single antenna [27]. MTI Radar uses the Doppler effects hypothesis to distinguish 

between stationary and non-stationary objects [29]. 

2.2 CW Radar 

The term “continuous wave radar” speaks more about a particular kind of operational radar by using a continuous signal or 

wave .in order to track moving targets they use the doppler effect [30-33].  

 

Fig.2. Block Diagram of Continuous Wave Radar 
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It is possible to discriminate between these two CW radar types they are 

2.2.1   Continuous wave radar without modulated  

Unmodulated CW Radar for short, is a radar type that uses a constant signal (wave) to identify moving targets. It also goes 

by the name CW Doppler Radar [34]. Two antennas are needed for this radar [35]. Wherein One of    these two antennas 

serve as a signal transmitter, second antenna is utilised in signal reception [36]. Target distance from the radar is not 

measured only the target's speed is measured. 

2.2.2   FMCW RADAR  

FMCW Radar (Linear Frequency-Modulated Continuous-Wave) is the name given to CW Doppler Radar if it employs 

linear frequency modulation [37-39]. It is also referred to as FMCW, or frequency-modulated continuous-wave radar [40]. 

Two antennas are needed for this radar. Wherein one antenna serves in signal transmission, the second antenna is utilised 

in signal reception [41]. Along with the target's speed, it also calculates at what distance target is from the radar [42]. Among 

the several types of radar, tracking radar tracks the movement of one or more targets. Before it begins the tracking activity, 

it typically carries out the following tasks [43-45]. 

• Determining the doppler frequency shift. 

• Determining angle of elevation and azimuth. 

• Target recognition. 

• The targets range. 

3.   SAR TARGET DETECTION METHODS 

3.1 Target Detection in Multi-static 

The raw radar data that was available at the sensor's output was used for the detection [46]. The HMM's fundamental 

premise that samples of data may be accurately described as random processes with parameters, also it is possible to estimate 

the stochastic process's parameters within a clearly defined framework [47] the process of simultaneously estimating position 

of the target and speed utilizing a functioning radar network and maximum search. This maxima search does not require data 

association because it operates directly in the position-velocity space [49-52]. However, there is generally no assurance that 

the maxima will always match real aims. Using numerous dispersed radar systems, Feng et al [53-54] examined two non-

growing characteristics in Cramer-Rao low bound target finding. They suggested a quick and effective power allocation 

approach for multiple cognitively dispersed radar system that heavily relies on alternating global search algorithm [55-58]. 

It was found that replacing one expensive high-power transmitter with multiple cheaper ones can save money without 

sacrificing radar performance [59] An unambiguous transmission from the transmitter and dispersed signal by surroundings 

both are obtained by the recipient [60]. It is possible to determine the position and velocity of any specific target by 

combining the data from various sensors. EL-Kamchouchy et al. suggested system architecture for multistatic s-band radar 

in order to locate and trace stealthy aircraft and tiny cross-sectional area aircraft [61-63]. The suggested geometrical 

configuration was tested with varied radar spacing in order to broaden the detection range of the air surveillance monostatic 

radar [64]. Also, to ascertain the improvement brought about by deploying this sort of radar, all practical stealthy aircraft 

paths were used to analyse the radar detection coverage [65]. The creators suggested two multistatic radar system 

configuration of S-band radar that would extend its detecting range of tiny covert aircraft [66]. The optimal receiver In case 

of a multistatic radar system is created by synthesizing target echoes with Rayleigh fluctuation and gaussian noise [67]. 

Baumgarten looked at how well this receiver performed and showed that under some circumstances, multistatic systems 

target detection skills are comparable to any of the monostatic system [68-70]. The intrinsic multistatic structures 

complexity may be diminished via using more direct approach, such as making a number of ancillary judgements at as 

many conventional receivers as feasible. A key analysis based upon an OR-criterion would then be made. In their work, 

D'Addio et al. found the best structures for receiving, detecting targets by centrally processing various radar data obtained 

from local sensors [71-72].  In-area sensors an analytical study of the model results in a unified optimum receiver for signals 

changing in accordance with the swerling I, II, III & IV models. Chaitanya et.al suggested a most common technique that 

may be used with basic DPCA cancellation in order to lessen the leftover of clutter at the output. By reducing clutter spectral 

breadth, the displaced phase centered antenna (DPCA) increases the likelihood of detecting slow-moving targets [73]. A 
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model created by Counts et al. uses calibrated measured data to exclude cable effects and direct coupling inside the system. 

Images created by beam formation algorithm gives a bit perception onto how well this data was acquired [74-76]. 

3.2   Target Detection using Multi-static Radar 

In addition to the evolution of the problem with radar detection to a compound-Gaussian situation with the GLRT detection, 

Reddy et al. provided numerically new optimized process of a polyphase coded waveform for orthogonal MIMO radar. 

The Particle Swarm Optimization Algorithm optimizes the transmitted orthogonal waveforms (PSO) [77]. Polarimetric 

radar systems send data using polarized waveforms that can mimic targets scattering patterns. The advantage of this 

technology can only be used to their fullest extent when the type targets is correctly identified, which can be costly [78]. 

Gogineni et al. presented distributed MIMO (multiple input multiple output) radar as a method for locating the target. They 

used a game theoretic framework for choosing a transmitting polarization by analyzing how each feasible transmit scheme 

would affect the different accessible target profiles [80]. This approach, unlike conventional approaches, can be put into 

practice without incurring significant costs because it does not need extracting the precise desired attributes from the 

measured data. Haungetal resolved the target estimate difficulty in bi-static multiple-input, multiple-output (MIMO) radar 

by using low-rank tensor completion [81]. Even though only a fraction of the data was actually recorded in the beginning 

across multiple pulsation intervals, the characteristics of a thin target picture, specifically the direction of arrival and 

direction of departure, were calculated simultaneously in this technique [82]. To retrieve the missing 3-D data, a tensor rank 

reduction approach based on the accelerated proximal gradient line-search (APGL) was developed [83]. The suggested 

techniques link the Doppler frequencies to the targets by using estimates of the target's position, velocity, and direction, 

either segregate or all at once [84]. The predicted Doppler frequencies at each receiver are used to calculate the number of 

targets in the first stage. Each target generates a unique set of Doppler frequencies for each receiver as a result of the MIMO 

arrangement and frequency-based nature. As a result, after a few rounds, the system can determine how many targets there 

are [85-87] Particularly for high Pd values, the suggested data association algorithms can successfully match the Doppler 

frequencies with actual targets. Better results are obtained using the Direction Based Data Association (DBDA) method 

that combines a dynamic threshold (DBDA-DT) with target direction estimations [88-89]. It is crucial that these algorithms 

employ only two successive scans at a time rather than all previously recorded data and are independent of the goal motion 

parameters. Gassier et al researched and discussed the issue with moving target recognition with use of passive radar by 

using the DVB-T transmitters of chance in multipath environments [90]. Inconsistent correlators may be used to decrease 

the number of false alarms and the masking effect caused by zero Doppler contribution (ZDC) for these emissions [91]. 

3.3  Moving Target Detection Methods 

The Discrete polynomial-phase transform (DPT) approach may be accustomed to recognize all echoes produced by an 

accelerating target at high SNR due to its minimal processing intricacy and excellent real-time performance. The DPT 

algorithm's drawback of this is because there is high mean square error of the frequency modulation rates, also a less 

detection probability when the SNR is low [92]. Pang et al. examined the causes of the DPT technique's performance 

detection degradation and presented an SDPT approach that can enhance DPT performance detection in low SNR [93]. In 

this technique, the segmented signal is coherently accumulated to increase the input SNR before the frequency modulation 

rate parameter is estimated using the DPT approach [94]. Li et. al created two novel detectors based on the Rao and Wald 

criteria for adaptive MIMO radar detection of moving objects in diverse settings. First, the Rao and Wald tests were created 

along presumption that the goal velocity and clutter structure were known. By doing a numerical optimization with respect 

to the desired velocity, the test variables that emerge are then modified. Finally, an estimate obtained from secondary data 

is used to replace the clutter structure in the adaptive versions. Finally, Monte Carlo simulations are employed to gauge 

how well the proposed detectors function.  Gennarelli et al recommended a passive multistatic through-wall radar system 

for determining where moving objects are located in three-dimensional(3-D) space. The localization job is performed using 

an inverse source-based method, and the unidentified targets are identified to be the source of contemporary distribution 

produced vs their size or surface [95]. To compensate for the single frequency receiver operation's lack of resolution, a 

multi array picture fusion approach is used. To locate and identify animated targets in the scene, change detection is used. 

By lengthening the coherent integration time in airborne or spaceborne radar application, Huanget [96]. Al claim that the 

radars capacity to identify a weak navigational target may be increased. Coherent integration performance however, may 

be negatively impacted by complicated range migration (RM) and Doppler frequency migration (DFM) effects. For purpose 

of detecting as well as estimating the motion parameters of a weakly maneuvering target, the authors have taken into 

account. DFM and RM of third order [97]. A keystone transform is used as well as matching filtering process is carried out 
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in azimuth-time and in the range-frequency domains, to obliterate any lingering coupled outcomes among azimuth and 

range [98]. Finally, clear picture of an object in motion is captured, as well as three parameters- velocity, acceleration, and 

acceleration rate are successfully determine. In order to get a near integration performance, the computational complexity 

must be reduced as the reduced parameter searching dimension. Results from simulated processing are offered to verify the 

viability of the suggested approach [99]. 

3.4   Detection of ground moving Targets 

A new reduced-dimensional technique for GMTI clutter avoidance using joint pixels sum-difference data was proposed by 

Yang et al., who worked on multi-satellite radar system. The reduced dimensional joint pixels data are obtained by 

orthogonally projecting the combined pixels data obtained from several synthetic aperture radar (SAR) photographs created 

by a multi- satellite radar system [100]. According to statistical expectations, combined into from the pixels comprise that 

information is shared and unique among SAR images. Afterward, adaptive processing can accomplish the GMTI and clutter 

cancellation goals. On the basis of readings from radar for airborne ground moving targets, the discriminating a set tightly 

spaced targets significant difficulty tracking target on the ground. Based on simulation of both single and  multi-target 

situations, Mertens et al. incorporated the carbonized probability hypothesis density filter into the Gaussian mixture. A 

modified matching technique was created by Xu et al. further to enhance the shadow-aided methods detecting performance. 

They also tried to produce an effective multi-feature-based shadow detection technique [101].  Additionally, the efficiency 

of the suggested strategy to identify moving targets for a longer period of time has been validated by the simulated tests. 

The findings show that the shadow-aided approach outperforms the conventional GLRT detector in terms of detection 

performance [102]. It is also demonstrated that the suggested shadow- aided approach has decreased & performance of 

detection in the high-SNR area. Ground-penetrating radar is employed by Giannakis et al. to determine a real-time estimate 

contrary to its landmine signal-to-clutter ratio (SCR) identification. An example of artificial neural networks used to 

represent SCR in relation to the characteristics of how deep the target is, center frequency of its pulse, and the depth of the 

soil.  

4.   IMAGING ALGORITHM 

Imaging Techniques in SAR are as follows: 

1. The Range-Doppler algorithm. 

2. Chirp-Scaling Algorithm 

4.1   Range Doppler Algorithm 

The findings show that the shadow-aided approach outperforms the conventional GLRT detector in terms of detection 

performance. It is also demonstrated that suggested shadow-aided approach has decreased performance of detection in the 

high-SNR area. Ground-penetrating radar is employed by Giannakis et al. to determine the real-time estimate of its 

landmine signal-to-clutter ratio (SCR) identification. Simulated neural networks are used to represent SCR in relation to the 

characteristics how deep the target is, the depth of the soil, and the pulse's frequency in the Centre [103-105]. The most 

crucial component of this algorithm is RCMC. Range frequency and azimuth frequency domains are used for RCMC. It is 

known as the Range Doppler Algorithm because azimuth frequency is impacted using the Doppler Effect or is linked to 

Doppler frequency. Three alternative approaches can be used to implement RDA [106]. However, they are all comparable 

in steps and only differently compress secondary range (SRC) RDA's primary steps are: 

1. First range compression  

2. FFT for Azimuth 

3. RCMC 

4. Filtering by Azimuth 

5. Reverse FFT 

6. Image Synthesis 

The most popular SAR processing technique that offers results with a respectable level of accuracy is the implementation 

range doppler algorithm [108]. 
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RDA consists of these three steps: 

1.  Compression of the range  

2.  Correction of Range cell migration 

3.  Compression in the azimuth. 

However, the specific steps required to implement the algorithm's code are as follows: 

1. Specifying auxiliary information and parameters. 

2.    Data transformation to 2D frequency domain 

3. Implementing a Match filter and Range Compression 

4. Correcting Range Cell Migration 

5. Transforming Range-Doppler domain from Range-Compressed data 

6. Creating a Match filter and applying Azimuth compression 

7. Sending data back to the time-domain 

8. Results visualization. 

 

Fig. 3 A Processed and Improved Scene by employing RDA 

4.2 Chirp-Scaling-Algorithm.  

Chirp-Scaling Algorithm is abbreviated as CSA. It operates on the scaling principle where a chirp-encoded signal is 

subjected to frequency modulation induce the scaling or shifting of a signal, it was created expressly to replace the RCMC’s 

interpolator [109]. The range migration of each target trajectory is compensated using chirp scaling, which employs a phase 

multiply. This approach holds the advantage of making the SRC dependent on azimuth frequency because the availability 

of the data is in the two-dimensional frequency domain [110]. The CSA's steps are: 

1. Data is transformed to the range Doppler domain using azimuth FFT. 

2. Using the Chirp Scaling 

3. Data is transformed into a two-dimensional frequency domain using a Range FFT. 

4. A phase multiply simultaneously uses RCMC, secondary range compression, and range compression. 

5. Range IFFT that provides information in the range Doppler domain 

6. A further phase multiplication uses a range-dependent matching filter to provide azimuth compression. 

7. Azimuth IFFT that returns data to the azimuth time domain is number seven. 
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5.   SAR IMAGING MODES 

There are numerous different imaging modes supported by the most recent SAR systems in addition to the simpler strip-

map imaging mode that was previously provided. The antenna is separated into many sub-apertures to support these imaging 

modalities [111-113]. Each sub-phase apertures and amplitude can be adjusted, which alters the antenna radiation pattern 

and, in turn, the illuminated area. 

1. Strip-Map SAR. 

2. Scan SAR 

3. Spotlight SAR 

4. High-Resolution Wide-Swath Imaging. 

5.1  Strip-Map SAR 

The strip-map SAR, which has been addressed in the previous sections, is the most common configuration. In this imaging 

mode the antenna patterns remain fixed and it illuminates a fixed swath as shown in Fig.4. The data acquisition occurs for a 

continuous strip of the terrain [114-115]. 

 

Fig. 4. Strip-Map SAR Imaging Mode 

5.2   Scan SAR 

The Scan SAR imaging mode is used when a wider swath is required. The Antenna pattern is steered in elevation during 

the data acquisition interval [116]. This leads the illumination of several sub-swaths as illustrated in Fig. 5 Since each sub-

swath is illuminated during a fraction of time  

When compared with the strip-map situation, the azimuth resolution is proportionally degraded [117].           

 

Fig. 5 Scan SAR Mode Increases the Swath Width at Expenses of Expenses of Azimuth Resolution. 
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5.3 Spotlight SAR 

For a specific target region, the spotlight SAR imaging setup is employed to attain the best resolution as shown in Fig. 6 

Increasing the integration time improves the resolution. In contrast to strip-map SAR operation, the antenna pattern is guided 

to illuminate a fixed region of interest for a significantly longer period of time. The decrease in photographing a continuous 

swath along [118-119]. 

 

Fig. 6 Spotlight Mode: Increases the Azimuth Resolution having as Trade-off the Decreases of the swath 

5.4   High- Resolution Wide-Swath Imaging 

A unique imaging technique has been suggested to get over the trade-off restriction between azimuth resolution and spatial 

coverage. In this imaging technique, multiple apertures recording in azimuth is combined with digital beamforming on 

receive in elevation. With this approach it is also getting excellent as illustrated in Fig. 7 Simultaneously Improves Azimuth 

Resolution and Swath Width at Expenses of Hardware and Computational Complexity. The drawback of Conventional SAR 

system is that they can only accomplish a large area at lower azimuth resolution. The relatively high Doppler centroid, 

which is one of the most critical factors that must be determined in order to compute SAR pictures is potential downside of 

multichannel Scan SAR approaches. 

Fig. 7 High-Resolution Wide-Swath SAR 

6.   POTENTIAL APPLICATIONS OF SAR 

Agriculture: Surface roughness variations are a sign of crop harvesting, soil tillage, and field ploughing [123]. 

Floods: Surface reflection variations can be used to differentiate between heavy and minor flooding, metropolitan areas, 

and permanent bodies of water [124]. 

Land subsidence: it can be detected by differences in measurements over time, such as sinking ground brought on by the 

extraction of subterranean natural resource [125]. 

Snow cover: By identifying wet, dry, and snow-free locations, variations in surface reflection can be used to forecast 

snowmelt [126]. 
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Wildfires: Penetrating dense smoke can deliver more precise and fast information about the scope of a forest fire and help 

assess vegetation damage [127]. 

Wetlands: Where land is covered by shallow water, penetration through wetland areas might disclose flooded plants [128]. 

7.   LIMITATION AND SCOPE OF SAR 

The strategies presented here can be used to find a target in a variety of circumstances. Additionally, it explains how various 

radar configurations can improve a target's detectability [129-132]. The majority of the methods increase computing 

complexity cubically as the number of transmitters increases, whereas they increase an NP problem's calculation volume 

exponentially [133-135]. The majority of the current radar algorithms replicate the environment (clutter) by assuming that 

it is stationary [136-137]. However, depending on the context in which a radar is operated, the clutter's properties might really 

change greatly. The performance of the radar could be severely hampered if this non-stationary fluctuation is not considered 

[138-141]. Since they rise only a few meters above the water's surface, small targets (such small icebergs) are typically 

difficult for marine radar systems to detect [142-146]. Given that the typical RCS is low at surface marine debris, very high-

resolution marine radars have the potential to detect incredibly small targets [147-150]. The statistical features of marine 

debris change from being uncorrelated and Gaussian to correlated and strongly tailed, which is a significant negative [151]. 

When a target is far away, it is frequently noticed that some algorithms cannot differentiate the shape of the target [152]. 

8.   CONCLUSION 

The numerous target detection methods are discussed in this paper, along with their many benefits and uses. Numerous 

researchers have used many methods to try to tackle this issue using various strategies, but some other above techniques 

still have significant drawbacks, which are examined and signify the study field where a solution has not yet been found. 
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